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Chapter 1.1. Systems of linear equations
Our aim is to revise the method of successive elimination for solving systems of
linear algebraic equations (briefly, linear systems). A linear system may be written in the
most general form as
a11x1 + a1y + ... + a1, = by,

.............................. (0.1)
11 + QmaTs + ...+ QnTrn = by

m is a number of equations, n is a number of unknowns. The system (1.1) is called homogeneous
if all free terms b; = 0. Matrix A of the system consists of coefficients

aji; a2 ... Qip

g1 422 ... Q2q
A=

Am1 Am2 ... Amn

The extended matrix (A[b) of the system is obtained by adding on the column of free
terms bj,

ai; Qi ... QA1np bl
a1 o2 ... QAon bg
(Afp) =
A solution of system (1.1) is an ordered set of numbers (cq, co, . .., ¢,) such that each of

equations in (1.1) becomes an identity when the unknowns x; are replaced by ¢;. A system is
called incompatible if it does not have any solution. If a system has a solution it is called
compatible. If a system has the only solution it is called determined. If a system has more
than one solution it is called undetermined. Two systems are called equivalent if they have
the same set of solutions (the set of solutions is empty if the system is incompatible). Note
that any homogeneous system has the zero solution 0 = (0, ...,0). Thus, any homogeneous
system is compatible.

We will do elementary transformations of system (1.1) resulting in new equivalent
ones. An elementary transformation of the first type consists in adding the k-th
equation multiplied by an arbitrary number ¢ to the i-th equation (i # k). Thus, we obtain
the new i-th equation

(ail + C(lk1>ZIJ1 + (CLZQ + CCLkQ)IQ + ...+ (am + cakn)xn = bz + Cbk.,
all equations except the i-th remain the same. So, we have new system
aj ry + alors + ..+ al,x, = b,

.............................. (0.2)
a1 x1+ a0+ ...+ al,,x, =0 .

Obviously, any solution of (1.1) is a solution of (1.2) as well. Evidently, system (1.1) may
be obtained from system (1.2) by the elementary transformation of the first type (to restore
the i-th equation of (1.1) it is enough to add the k-th equation of (1.2) multiplied by (—c)
to the i-th equation of (1.2)). It follows that systems (1.1) and (1.2) are equivalent. An
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elementary transformation of the second type of system (1.1) consists in the follows:
i-th and k-th equations interchange places and the other ones remain the same. Obviously,
the new system is equivalent to (1.1).

Applying elementary transformations we can reduce system (1.1) to echelon form (quasi-
triangular form). Using if necessary elementary transformation of the second type we may
assume that aj; # 0 in system (1.1). Adding 1-th equation multiplied by ¢; = —a;1/aq; to
i-th equation ¢ = 2, ..., m we obtain equivalent system

!/ / / /
a11T1 + a2 + ...+ aq, T, = 07,

/ Y
A9, Tp + - .o+ Ay, Ty, = by,
.............................. (0.3)
/ / Y
AppTp + oo Gy T = by

Thus, using 1-th equation we eliminate unknown x; from all succeeding equations. Some
other unknowns might have disappeared as well. Note that the first equation in (1.3) is just
the same as in (1.1). After that applying if necessary elementary transformations of the
second type we may assume that a;, # 0 in system (1.3) and using the second equation
eliminate z, from succeeding equations. The first and second equations remain the same.
Proceeding the process of elimination of unknowns as long as possible we obtain the following
system
111 + a199 + ... + dlnxn = Bl,

AopTp + oo + a9, = bo,
A3qTq + ...+ A3pTy = 1_13,
ArsTs + o+ GpnTp = by, (0.4)
0= 67”4-1;
0= byy,.

Here a1y, agp, G3q,.-.,0rs # 0,1 < p < q < --- < s < n. We say that system (4) has
echelon form. It may happen that there are no equations of the form 0 = b.

In the process of successive elimination it is convenient to work with rows of extended
matrix of system (1.1) instead of equations.

Theorem 1 (i) Any linear system may be reduced to echelon form (1.4) by elementary
transformations.

(i) A linear system is compatible if and only if its echelon form (1.4) does not contain
equations of the type 0 = b where b # 0.

Suppose that the echelon form (1.4) of system (1.1) does not contain equations of the type
0 = b where b # 0, i.e. (1.4)(as well as (1.1))is compatible. The unknowns x1, x,, ¥,.. .,
are called pivotal or principal unknowns. The remain unknowns are called free unknowns.
Thus, there are r pivotal unknowns and n —r free unknowns. We can choose arbitrary values
of free variables and substitute them in system (1.4). Since a,s # 0 we can find the value of
x, from the r-th equation. Substitute this value for z, in the first, the second, ..., the (r-1)-th



equations. Now we find the next pivotal unknown from the (r-1)-th equation. Proceeding this
procedure step by step from the bottom to the top we can find unique values for all principal
unknowns. Thus, the values of principal unknowns are uniquely determined by values of free
unknowns which may be chose arbitrary.

The procedure allows to find formulas expressing the principal unknowns through the

free unknowns. To avoid the abuse of notations assume that x4, ..., z, are pivotal unknowns
and x,,1,...,x, are free unknowns. We can find formulas
1= f1(Tra1y o Tn)y ey T = [r(Xpg1, o, ).

Written as n-tuple they give the general solution of system (1.1)

X — (fl(IT—‘rl? D 7I7L)7 .. ‘7f'l’(x7"+17 o an)axT—i-lu o 7'rn>‘

Corollary 1 (i) A compatible linear system is determined if and only if r = n.
(ii) A homogeneous linear system has a non-zero solution if m < n.

Example 1. Find the formula of general solution of linear system
6%1 + 3%2 + 2x3 + 33)4 + 41’5 = 5,
4fL‘1 —I— 21’2 + T3 + 21‘4 —|— 3I5 = 4, (05)
41 4 229 4+ 323 + 224 + 5 =0,
21’1 + Z9 + 733'3 + 3.1'4 + 21’5 =1.
We will work with rows of extended matrix of the system

6 3

w

4 5

W = DN

4
4
2

— N DN
W DN DN
N = W
— O

The first and forth rows (equations) interchange places

217 3 21
4 21 2 3 4
423210
6 3 2 3 4 5

Add the first row (equation) multiplied by (—2) to the second and the third rows (equations)
and add the 1-th row multiplied by (—3) to the 4-th

21 7 3 2 1
00 —-13 -4 -1 2
00 —-11 -4 -3 -2
00 —-19 -6 -2 2

To simplify calculations add the third row multiplied by (—1) to the second and the forth

rOWS
17 3 2 1

0o -2 0 2 4
0 —-11 -4 -3 -2
0 -8 =2 1 4

S O O
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Add the second row multiplied by (—11/2) to the third row and add the second row multiplied
by (—4) to the forth rows

7 3 2 1
-2 0 2 4
0 —4 —-14 -24
0o -2 -7 -12

S OO NN
S O O

Add the third row multiplied by (—1/2) to the forth row

21 7 3 2 1
00 -2 0 2 4
00 0 -4 —-14 -24
00 0 O 0 0

The last matrix is the extended matrix of system

21‘1 —I— I2+7$3+3I4+2I5 = 1,

—2[,5'3 + 21’5 = 4:,
—dxy — 1dxs = —24, (0.6)
0=0.

We can see that system (1.6) has an echelon form, it is compatible, 21, x3, x4 are principal
unknowns, xs, x5 are free unknowns. From the third equation of (1.6) x4 = (=7/2)z5 + 6,
from the second equation x3 = x5 — 2. Substituting the formulas for x3 and x4 in the first
equation obtain z; = (—1/2)xs 4+ 3/4x5 — 3/2. Thus,

X = (—1/2wy + 3/4w5 — 3/2, 29, w5 — 2, —7/275 + 6, T5)

is a general solution of (1.5). To obtain a particular solution of (1.5) choose values for free
unknowns, say xo = 2, x5 = —1, and substitute them to the formula of general solution. We
will have solution (—13/4, 2, —3, 19/2, —1).



Chapter 1.2. Symmetric group. Elementary group theory

Let M be a finite set with n elements. Since we does not concern the nature of its elements
we will identify M and the set of numbers {1, 2,..., n}. A bijective mapping (or a one-
to-one correspondence) f : M — M is called a permutation of degree n. The set of all
permutations of degree n is denoted by S,,. The permutation may be written as

1 2 ... n
f_(i1 lo ... zn)

where f(t) = i;. Obviously, {iy, ia,...,4,} = {1, 2,..., n}. There are n! different permutations
of degree n, |S,| = n!. For mappings g : X — Y, f:Y — Z anew mapping fog: X — Z
called the composition of f and g is defined, f o g(t) = f(g(t)), t =1, 2,..., n. In
particular, if f, g € S, then fog € S, and for

_(1 2 ... n)
T=\ i jo oo

fog:(fé-l) féé) f(Zn))

~

1 2 3 4 5 1 2 3
fog:(f@) f@) £3) £5) f(1)>:(1 2 5

Example 2. Let

N W~
=~ Ot
~~_
K
Il
VR
—_
IS )
w w
[G2RNTN

= Ot
N——

1
3
Then

4 5

4 3 )

Denote by e the identity mapping e(t) =¢, t =1, 2,..., n. Evidently, eo f = foe = f
for any f € S,. For any mappings f : A — B, g : B — C, h: C' — D the associative low
is fulfilled (hog)o f = ho(go f). In particular, the associative low holds for permutations
f, g, h € S,. Any permutation f has an inverse f~!, f71(f(i)) =i, f(f7(i)) = 1, ie.

1 2 3 45 1 2 3 45
“l,f_ -1 _ _ -1 _
fltof=fof —e.Forexample,forf—(31524 , fT = 24153).
Let G be a non-empty set. A fixed mapping p : G x G — G is called a binary operation
on G.

Let G be a non-empty set G with a binary operation p. Denote p(a,b) by a * b. We
will denote binary operation on GG by % as well. A binary operation is called associative if
(a*b)*c=ax(bxc)for any a, b, ¢ € G. An element e € G is called a unit element
if exa =axe =afor any a € G. A set with a binary operation can have only one unit
element.

A set G with an associative binary operation x is called a semigroupand may be denoted
by (G, *). A semigroup with a unit is called a monoid and may be denoted by (G, *, e).
An element a of a monoid G is called invertible if there exists an element b € G such that
a*xb = bxa = e, here e is a unit of G.Such an element b is called an inverse of a. An element
a of monoid G can have only one inverse. The inverse of a is denoted by a™!.

A monoid G where any element is invertible is called a group. Thus, a group G is a
non-empty set with a binary operation * satisfying the following axioms:
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(1)the operation * is associative, i.e. (axb)xc=ax (bxc) for all a, b, c € G,

(2) G has a unit element e, i.e. such an element that a x e = e x a = a for every a € G,

(3) any element a € G has an inverse ™' € G, i.e. for every a € G there exists such an
element a™! € G that a*xa™' = a™! xa = e. The cardinality of a group (semigroup, monoid)

G is called the order of G. Thus, S, is a group of order n!.

Remark. Different notations can be used for binary operation on G, for example o, x, +, -, [J
etc. If binary operation is denoted by + then the corresponding semigroup (monoid, group)

G is named additive . In this particular case we mean 0 (null element, zero) instead of
e (unit) and the opposite element —a instead of the inverse a™'. If we use - for a binary

operation then (G,-) is named multiplicative semigroup (monoid, group). In this case the

sign - in the product will be often omitted, a - b = ab.

Now we can see that (S,,0) is a group. The identity permutation e is the unit in S,.
The inverse mapping f~! is the inverse of f in the group S,. The group (S,,0) is called a
symmetric group. The sign o in the product of permutations will be omitted.

Let ki, ka,..., k, be an ordered set of symbols k; € M = {1,..., n}. A permutation
f such that f(k1) = ko, f(k2) = ks,..., f(kr—1) = ky, f(k,) = k1 and f(j) = j when
Jj# ki, i=1,...,ris called a cycle of length r and is denoted by (kiks,...k,). A cycle of
length 2 is called a transposition.

Two cycles f = (kiks... k) and g = (p1p2...ps) are called independent (disjoint) if
{k1,... k. }n{p1,...,ps} = 0. Two independent cycles commute, fg = gf.

Theorem 2 Any permutation f € S, is a product of independent cycles f = C1Cs---C,.
This decomposition is unique up to the order of factors.

1 2345 67
26 37415
f(1)=2, f(2) =6, f(6) =1 and we obtain the cycle (126). The next symbol really moved
by gis 4, f(4) =7, f(7) =5, f(5) = 4. We obtain the second cycle (475). We considered
all symbols really moved by g. Thus, g = (126)(475).

The cycle (12...m) is equal to the following product of transpositions

Example 3. Let g = ) . Take any symbol really moved by g, say 1,

(12...m) = (12)(23)...(m — 1,m).

Note that this product contains m — 1 factors. Now it follows from Theorem 3 that any
permutation f € S, has a decomposition into a product of transpositions.

Theorem 3 Let f =1t;...t; be a decomposition of f € S, into a product of transpositions.
The number e; = (—1)* does not depend on which decomposition is used. Moreover, €, =
EfEg-

The number ¢y is called the parity ( the sign) of permutation f. A permutation f is
called even if e; = 1 and odd one if ey = —1. It follows from the theorem that the product
of even permutations is an even permutation and the inverse of even permutation is even as
well. Therefore, the set of even permutations with respect to multiplication of permutations
as binary operation is a group. The group of even permutations of degree n is called the
alternating group and denoted by A,. Evidently, |A,| = %n!.

A non-empty subset H in a group (G, %) is called a subgroup of G if hy x hy € H and
h=' € H for any hy, hy, h € H. Thus, (H,*) is a group. We can see that A, is a subgroup
of S,,.



Let S be a subset of a group G. If any element g € G can be written as a product of
elements of S and inverses of elements of S then we say that GG is generated by S. In
this case S is called the set of generators of G. Thus, the set of transpositions is a set of
generators of .S,,.

Let G and H be groups. A mapping ¢ : G — H is called a homomorphism of groups if
©(g192) = ©(g1)¢(g2) for any g1, go € G. According to the theorem the mapping of parity
e: S, — {£1} is a homomorphism of groups.
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Section V. Problems for selfstudy
. Find the formula of general solution of linear system

r1 + 229 + 3x3 — 2004 + 5 = 4,
3x1 + 625 + bry — 4xy + 3T5 = 5,
T + 21‘2 —I— 7ZL‘3 — 41’4 + Ty = 1]_,
221 + 4xo + 223 — 314 + 315 = 6.
. Find the formula of general solution and a particular solution of linear system
621 + 4xo + dx3 + 224 + 325 = 1,
3x1 + 229 + 4dx3 + x4 + 225 = 3,
35(]1 + 2?[72 — 2[E3 + Ty == —7,
91’1 + 61’2 + T3+ 3.1'4 + 2.1'5 = 2.
. Find the formula of general solution and a particular solution of linear system
61’1 + 41’2 + 51’3 + 21’4 + 3$5 = 1,
3x1 + 229 + a3+ x4+ 225 = 3,
3x1 4+ 219 — 223 + T4 = —7,
91’1 + 61’2 + T3+ 3.1'4 + 2335 = 2.
. Solve the linear system
10[[’1 —I— 23I2 —f- 171’3 + 44!134 = 25,
1521 4+ 3529 + 2623 + 6924 = 40,
25]31 + 57.7}2 + 421‘3 + 108.1‘4 = 65,
3021 + 6929 + 5lag + 13324 = 95.

. Find the sign of permutation

[erI
(S0 \V]
— W
=~
N Ot

. Find the sign of permutation

(123456758
813657 42)

. Find the product of permutations (15)(234).

. Find the product
1 2 3 45
2 451 3

(s

A
SO\
NGNSV
—
DO O
N—

. Find the product



10. Find a permutation X such that AX B = C' where
. 1234567 B 1234567
- 32165 4) 7 \312745¢6)’

c_(12345067
“\5136472)

11. Decompose the permutation into a product of independent cycles
123456789
589 21436 7))

12. Find the values for ¢ and & such that the product

Q470630105507 A24031

enters to a determinant of order 7 with the sign +.
13. Compute the determinant

2 =5 1 2
-3 7 -1 4
5 -9 2 7
4 -6 1 2
14. Compute the determinant
35 59 71 52
42 70 77 54
43 68 72 52
29 49 65 50
15. Compute the determinant
51 2 7
300 2
1 3 45
200 3
16. Compute the determinant
1 nn n
n 2 n n
nn 3 n

17. Solve the system of equations using Cramer’s rule
21‘1—}-2[E2— T3 + 1’4:4,

4ZL'1 +3[E2 — T3+ 21’4 = 6,
8ZL’1 + 51‘2 — 31’3 + 41‘4 = 12,
3x1 + 319 — 223 + 224 = 6.

12



18. Find the product of matrices

5 8 —4 3 2 5
6 9 =5 4 -1 3
4 7 =3 9 6 5
19. Find the inverse of the matrix
2 5 7
6 3 4
5 —2 -3
20. Solve the matrix equation
2 -3 1 9 76
4 =5 2 X 11 2
5 =7 3 111

21. Compute expressions

(5+4)(7 — 6i)

a) (24 )3+ 70) — (14 20)(5 +3i), )5

L )i, d) i, neZ.

22. Find the trigonometric form of complex number:
a)T; b) 144 ¢)1—i; d) 1+iV3; e) V3 —i.

23. Compute the expressions:

1—1

a) (14 )10 p) (ﬁ“) |

24. Write as polynomials of sinz and cosz
sin4x, cos4zx.

25. Compute .
a) Vi; b) V1; ¢) V1; d) V1 +1; e) v/—2T.
27. Let €, = cos % + 7sin 22—’“, 0 < k < n. Prove that
a) V1= {eo, €1,..., €n1}i
b)er=¢¥ k=0,1,..., n—1;
c) /1 is a cyclic group of order n with respect to the multiplication of complex numbers.
28. Find the rank of the matrix

8§ 2 2 -1 1
1 74 =25
-2 4 2 -1 3

29. Find a basis of the system of vectors
ar=(5,2 =3, 1), aa=(4, 1, =2, 3), a5 = (1, 1, —1, —2)
ay = (37 4, —1, 2), as = (7, —6, > —7,0)
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30. Find a fundamental system of solutions of the homogeneous linear system
T1+ To —2x3+ 214 =0,

3[E1 + 5ZE2 + 61‘3 — 41’4 = 0,
4$1 + 5I2 — 2!E3 + 31‘4 = O,
3r1 + 8xy + 24x3 — 1924 = 0.

31. Find the sum and the intersection of vector spaces U; =< a1, aq, az >, Uy =< by, by, b3 >
where
ap=(1, 2, 1, =1), aa =1(2, 3, 1, 0), a3 = (1, 2, 2, —3),

by =(1, 1, 1, 1), by = (1, 0, 1, —1), b3 = (1, 3, 0, —4).

32. Find a basis of the kernel of the linear mapping given by matrix

3 5 —4 2
2 4 -6 3
11 17 -8 4

33. Find eigenvalues and eigenvectors of linear transformations given by matrices

2 -1 2 0 10
)| 5 =3 3 |0 | -4 4 0
-1 0 =2 -2 1 2
. . . 3 5. .
34. The linear transformation ¢ has the matrix 4 3 )0 the basis a; = (1, 2), as = (2, 3).
The linear transformation ¢ has the matrix g g in the basis by = (3, 1), by = (4, 2).

Find the matrices of ¢ + ¢ and ¢ - ¥ in the basis by, bs.

35. Find the canonical form of the following quadratic forms

a) % + 13 4 323 + 4w179 + 27173 + 27973,

b) T1T9 + T1X3 + Tox3.

36. Apply the orthogonalization process to the system of vectors

a1 =(1,2, 2, —1), as=(1, 1, =5, 3), ag = (3, 2, 8, —7).

37. Find the orthogonal projection of a vector x on a subspace U.
x = (7, =4, —1, 2), U is the subspace of solutions of linear system

21‘1+ 1’2+[E3+3[L’4:0,
311 + 229 + 223 + x4 =0,
1 + 229 + 223 — 924 = 0.

38. Reduce the quadratic form to the principal axes
623 + 52 + Tl — 4wy + 4y 3.
39. Find the orthogonalized basis consisting of eigenvectors of the unitary operator given by

. 1472 1
1
the matrix 7 ( 11— ) .

14



40. Investigate properties of binary operations on a set M:

a) M =N, xxy=aY;

b) M =N,z xy = ged(z,y);

) M=7Z, xxy=ux—uy;

d) M =R,z xy = 2% +1°

41. Show that G = [0, 1) is a group with respect to binary operation @ where a®b = {a+b}
is the fractional part of a + b.

42. Let (G, ) be a group. Show that (G, %) is a group where axb=1">-a.

43. Find all subgroups in a) the four-element Klein group b) in Ss, c¢) in Ajy.

45. Find the order of an element of a group:

a>7r_12345678910 .
“\4371256109 8 10
b) —% — ﬁi € C* where C* =C\ {0};

-
c)(l 6)6@2(@);

11

1 2
e)(o 1)€GL2(Zo)

46. Find elements of order 2 in the groups:
a) C*, b) S5, c¢) As.
47. Prove that any group of an even order contains an element of order 2.
48. Find all homomorphisms among the following mappings f : C* — R* :
a) f(z) = 2], b) f(z) =2l2|, ¢) f(2) = . d) f(2) =1, ¢) f(z) = 2%, ) f(z) =1+,
g) f(z) = 2. 49. find all homomorphisms Zg — Zg.
50. Find the group of automorphisms of a group:
a) Z, b) Z,, pis a prime number, c) Ss.
51. Prove that group S acts by conjugations on the subset M = {(12)(34), (13)(24), (14)(23)}.
Thus, the homomorphism ¢ : S, — S5 is defined. Find Ker® and |Phi.
52. Find the quotient group:

a) R /R

b) C*/RT;

¢) C*/T! where T! = {z € C||z| = 1};

d) ']I’l/IU where U,, = {z € C|z" = 1};

¢) GL(R)/SLy(R);

f) 47./127.
53. Using Sylow theorems prove that
a) any group of order 15 is a cyclic group;
b) any group of order 36 is not a simple group.
54. Prove that any p-group is solvable.
55. Decompose the groups into the direct sum:
a) Zg, b) Zya, ¢) Zeo.
56. Prove that the group D, =< a,b, ||a®, b?, (ab)™ > is a group of order 2n.

57. Prove that
G—<a, b|a>,1® >= H = {( iol ’f)\nez}.

58. Find all up to isomorphisms abelian group of order 27.
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59. Find all up to isomorphism abelian groups of order 36.

60. Find out if the following groups are isomorphic:

a) Zg @ Zsg and Zig ® Zns;

b) Ze ® Zss and Zg ® Zoy.

61. Which of the following sets of numbers form a ring with respect to the usual operations
of addition and multiplication:

1) Z, 2) nZ, 3) the set of non-negative integers, 4) Q, 5) {z + yv2|z, y € Q}, 6) {z +
yV2lz, y € Q) 7) {o +yV2 + 2V/4|z, y, 2 € Q}, 8) Z[i) = {z + iylz, y € Z}?

62. Which of the following sets of functions form a ring with respect to the usual operations
of addition and multiplication:

1) the set Cla, b] of all continues real functions on the closed interval [a, b];

2) the set of all real functions equal to zero on a fixed subset A C R;

3) the set of all trigonometric polynomials

{ap + Z(ak cos kx + by sin kx))|nN, ag, b, € R}.

k=1

63. Find all ideals of rings Z, K|z] where K is a field.

64. Show that the rings Z[z| and K[z, y] (K is a field) are not principal ideals rings.

65. Prove that

1) Flz]/(x — a) = F where F is a field;

2) R[z]/(2* + 1) = C;

3) Rlz]/(a* + x4+ 1) = C.

66. Let K be a field. Show that the linear mapping

o My(K) @ My(K) — Mg (K), such that ¢(E;; ® Eyr) = Eipspro1)j+ste-1),1 < 4, Jj <
s, 1 <r, k<tis an isomorphism of algebras.

67. Prove that the fields Q, R have no automorphisms different from the identity mapping.
68. For what n =2, 3, 4, 5, 6, 7, 8, 9 there exists a field consisting of n elements?

69. Solve the equations in Zy;; 1) 22 =5, 2) 2" =7,3) 23 =a, 4) 22 + 32+ 7= 0.

70. Find the minimal polynomials for elements

1) V2 over Q, 2) V2 ++/3 over Q, 3) 1+ /2 over Q(v2 + /3).

71. Find the Galois group of fields Q(v/2), Q(v2 + v/3), Q(v/2) over Q.

72. Find all commutative ideals of the group algebra C[G] for 1) G = S5, 2) G = Ds.

73. Find a basis of the center of the group algebras of the groups Sz, Ajy.

74. Find the character of the representation p of S, on R" such that p(70(e;) = er(;) where
{e1,...,en} is the standard basis of R".

75. Create the table of characters of the group Ss.

76. Let A be an algebra over a field K. A linear mapping D : A — A such that D(ab) =
D(a)b+ aD(b) is called a derivation of algebra A. Denote by DerA the linear space of all
derivations of an algebra A. Show that DerA is a Lie algebra with respect to multiplication
[Dl, D2] = Dl O DQ - DQ o Dl.

77. Let A = A @ A7 be a two graded associative algebra over a field K, i.e. A;A; C Aiyj
(the sum modulo 2). Let [a, b] = ab— (—1)Yba where a € A;, b € A;.

Prove that for any homogeneous elements a, € A;, b € A;, c € A, we have

1) [a, b] = —(=1)¥][a, b] (graded skew-symmetric),

2) (—=1)*[a, [b,c]] + (=1)¥[b, [¢,a]] + (—1)7%[c, [a, b]] = O (graded Jacobi identity).

A 2-graded algebra with a multiplication satisfying conditions 1) - 2) is called a Lie superalgebra.
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