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1. Mathematical model of strategic situation 
 

A STRATEGIC GAME is a model of interacting decision-makers. 
In recognition of the interaction, we refer to the decision-makers as 
players. Each player has a set of possible actions. The model captures 
interaction between the players by allowing each player to be affected by 
the actions of all players, not only her own action. Specifically, each 
player has preferences about the action profile—the list of all the players’ 
actions. 
More precisely, a strategic game is defined as follows.  
_ DEFINITION  Mathematical model of a strategic game (with ordinal 
preferences) consists of 
• a set of players 
• for each player, a set of actions 
• for each player, preferences over the set of action profiles. 
 
A very wide range of situations may be modeled as strategic games. For 
example, the players may be firms, the actions prices, and the preferences 
a reflection of the firms’ profits. Or the players may be candidates for 
political office, the actions campaign expenditures, and the preferences a 
reflection of the candidates’ probabilities of winning. Or the players may 
be animals fighting over some prey, the actions concession times, and the 
preferences a reflection of whether an animal wins or loses.  
As in the model of rational choice by a single decision-maker, it is 
frequently convenient to specify the players’ preferences by giving payoff 
functions that represent them. Bear in mind that these payoffs have only 
ordinal significance. If a player’s payoffs to the action profiles a, b , and c  
are 1, 2, and 10, for example, the only conclusion we can draw is that the 
player prefers c  to b  and b  to a ; the numbers do not  imply that the 
player’s preference between c  and b  is stronger than her preference 
between a  and b . 
Time is absent from the model. The idea is that each player chooses her 
action once and for all, and the players choose their actions 
“simultaneously” in the sense that no player is informed, when she 
chooses her action, of the action chosen by any other player. (For this 
reason, a strategic game is sometimes referred to as a “simultaneous 
move game”.) Nevertheless, an action may involve activities that extend 
over time, and may take into account an unlimited number of 
contingencies. An action might specify, for example, “if company X ’s 
stock falls below $10, buy 100 shares; otherwise, do not buy any shares”. 
(For this reason, an action is sometimes called a “strategy”.) However, 
the fact that time is absent from the model means that when analyzing a 
situation as a strategic game, we abstract from the complications that may 
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arise if a player is allowed to change her plan as events unfold: we 
assume that actions are chosen once and for all. 
 
Example 1: the Prisoner’s Dilemma 
 

One of the most well-known strategic games is the Prisoner’s 
Dilemma. Its name comes from a story involving suspects in a crime; its 
importance comes from the huge variety of situations in which the 
participants face incentives similar to those faced by the suspects in the 
story. 
Two suspects in a major crime are held in separate cells. There is enough 
evidence to convict each of them of a minor offense, but not enough 
evidence to convict either of them of the major crime unless one of them 
acts as an informer against the other (finks). If they both stay quiet, each 
will be convicted of the minor offense and spend one year in prison. If 
one and only one of them finks, she will be freed and used as a witness 
against the other, who will spend four years in prison. If they both fink, 
each will spend three years in prison. 
This situation may be modeled as a strategic game: 
Players: The two suspects. 
Actions:  Each player’s set of actions is {Quiet, Fink}. 
 
Preferences Suspect 1’s ordering of the action profiles, from best to 
worst, is (Fink, Quiet) (she finks and suspect 2 remains quiet, so she is 
freed), (Quiet, Quiet) (she gets one year in prison), (Fink, Fink) (she gets 
three years in prison), (Quiet, Fink) (she gets four years in prison). 
Suspect 2’s ordering is (Quiet, Fink), (Quiet, Quiet), (Fink, Fink), (Fink, 
Quiet). 
We can represent the game compactly in a table. First choose payoff 
functions that represent the suspects’ preference orderings. For suspect 1 
we need a function u1 for which u1(Fink, Quiet) > u1(Quiet, Quiet) > 
u1(Fink, Fink) > u1(Quiet, Fink). 
A simple specification is u1(Fink, Quiet) = 3, u1(Quiet, Quiet) = 2, 
u1(Fink, Fink) =1, and u1(Quiet, Fink) = 0. For suspect 2 we can similarly 
choose the function u2 for which u2(Quiet, Fink) = 3, u2(Quiet, Quiet) = 2, 
u2(Fink, Fink) = 1, and u2(Fink, Quiet) = 0. Using these representations, 
the game is illustrated in Figure 1. In this figure the two rows correspond 
to the two possible actions of player 1, the two columns correspond to the 
two possible actions of player 2, and the numbers in each box are the 
players’ payoffs to the action profile to which the box corresponds, with 
player 1’s payoff listed first. 
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                                                        Suspect 1 
                                                 Quiet     Fink 
                                      Quiet     2, 2         0, 3 
      Suspect 2 
                                      Fink       3, 0        1, 1 

Figure 1. The Prisoner’s Dilemma 
 
The Prisoner’s Dilemma models a situation in which there are gains from 
cooperation (each player prefers that both players choose Quiet than they 
both choose Fink) but each player has an incentive to “free ride” (choose 
Fink) whatever the other player does. The game is important not because 
we are interested in understanding the incentives for prisoners to confess, 
but because many other situations have similar structures. Whenever each 
of two players has two actions, say C (corresponding to Quiet) and D 
(corresponding to Fink), player 1 prefers (D, C) to (C, C) to (D, D) to (C, 
D), and player 2 prefers (C, D) to (C, C) to (D, D) to (D, C), the 
Prisoner’s Dilemma models the situation that the players face. Some 
examples follow. 
  
Example 2: Working on a joint project 
 
You are working with a friend on a joint project. Each of you can either 
work hard or goof off. If your friend works hard then you prefer to goof 
off (the outcome of the project would be better if you worked hard too, 
but the increment in its value to you is not worth the extra effort). You 
prefer the outcome of your both working hard to the outcome of your 
both goofing off (in which case nothing gets accomplished), and the 
worst outcome for you is that you work hard and your friend goofs off 
(you hate to be “exploited”). If your friend has the same preferences then 
the game that models the situation you face is given in Figure 2, which, 
as you can see, differs from the Prisoner’s Dilemma only in the names of 
the actions. 
 
                              Work hard       Goof off 
   Work hard             2, 2                 0, 3 
   Goof off                3, 0                 1, 1 
               Figure 2 Working on a joint project 
 
  
Example 3:  Duopoly 
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In a simple model of a duopoly, two firms produce the same good, 
for which each firm charges either a low price or a high price. Each firm 
wants to achieve the highest possible profit. If both firms choose High 
then each earns a profit of $1000. 
If one firm chooses High and the other chooses Low then the firm 
choosing High obtains no customers and makes a loss of $200, whereas 
the firm choosing Low earns a profit of $1200 (its unit profit is low, but 
its volume is high). If both firms choose Low then each earns a profit of 
$600. Each firm cares only about its profit, so we can represent its 
preferences by the profit it obtains, yielding the game in Figure 3. 
 
                                                       High                Low 
                          High            1000, 1000         −200, 1200 
                          Low           1200, −200             600, 600 
                     Figure 3 A simple model of a price-setting duopoly 
 
Bearing in mind that what matters are the players’ preferences, not the 
particular payoff functions that we use to represent them, we see that this 
game, like the previous one, differs from the Prisoner’s Dilemma only in 
the names of the actions. 
The action High plays the role of Quiet, and the action Low plays the role 
of Fink; firm1 prefers (Low, High) to (High, High)  to (Low, Low)  to 
(High, Low) , and firm2 prefers (High, Low)  to (High, High)  to (Low, 
Low)  to (Low, High) . 
As in the previous example, I do not claim that the incentives in a 
duopoly are necessarily those in the Prisoner’s Dilemma; different 
assumptions about the relative sizes of the profits in the four cases 
generate a different game. Further, in this case one of the abstractions 
incorporated into the model—that each firm has only two prices to 
choose between—may not be harmless; if the firms may choose among 
many prices then the structure of the interaction may change.  
 
Example 4: Bach or Stravinsky? 
 

Two people wish to go out together. Two concerts are available: 
one of music by Bach, and one of music by Stravinsky. One person 
prefers Bach and the other prefers Stravinsky. If they go to different 
concerts, each of them is equally unhappy listening to the music of either 
composer. 
We can model this situation as the two-player strategic game in Figure 4, 
in which the person who prefers Bach chooses a row and the person who 
prefers Stravinsky chooses a column. 
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                                                     Bach                        Stravinsky 
                            Bach                  2, 1                              0, 0 
                            Stravinsky         0, 0                              1, 2 
                             Figure 4 Bach or Stravinsky 
 
 This game is also referred to as the “Battle of the Sexes” (though the 
conflict it models surely occurs no more frequently between people of the 
opposite sex than it does between people of the same sex). I refer to the 
games as BoS, an acronym that fits both names. (I assume that each 
player is indifferent between listening to Bach and listening to Stravinsky 
when she is alone only for consistency with the standard specification of 
the game. As we shall see, the analysis of the game remains the same in 
the absence of this assumption.) 
Like the Prisoner’s Dilemma, BoS models a wide variety of situations. 
Consider, for example, two officials of a political party deciding the stand 
to take on an issue. 
 Suppose that they disagree about the best stand, but are both better off if 
they take the same stand than if they take different stands; both cases in 
which they take different stands, in which case voters do not know what 
to think, are equally bad. 
Then BoS captures the situation they face. Or consider two merging firms 
that currently use different computer technologies. As two divisions of a 
single firm they will both be better off if they both use the same 
technology; each firm prefers that the common technology be the one it 
used in the past. BoS models the choices the firms face. 
 
Example 5:  Matching Pennies 

Two people choose, simultaneously, whether to show the Head or 
the Tail of a coin. If they show the same side, person 2 pays person 1 a 
dollar; if they show different sides, person 1 pays person 2 a dollar. Each 
person cares only about the amount of money she receives, and 
(naturally!) prefers to receive more than less. A strategic game that 
models this situation is shown in Figure 5. (In this representation of the 
players’ preferences, the payoffs are equal to the amounts of money 
involved. We could equally well work with another representation—for 
example, 2 could replace each 1, and 1 could replace each − 1.) 

 
                                                  Head           Tail 
                               Head          1, − 1        − 1, 1 
                               Tail           − 1, 1           1, − 1 
                                Figure 5  Matching Pennies 
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 In this game the players’ interests are diametrically opposed (such a 
game is called “strictly competitive”): player 1 wants to take the same 
action as the other player, whereas player 2 wants to take the opposite 
action. This game may, for example, model the choices of appearances 
for new products by an established producer and a new firm in a market 
of fixed size. Suppose that each firm can choose one of two different 
appearances for the product. The established producer prefers the 
newcomer’s product to look different from its own (so that its customers 
will not be tempted to buy the newcomer’s product), whereas the 
newcomer prefers that the products look alike. Or the game could model 
a relationship between two people in which one person wants to be like 
the other, whereas the other wants to be different. 
 
2. Nash equilibrium 
 

What actions will be chosen by the players in a strategic game? We 
wish to assume, as in the theory of a rational decision-maker, that each 
player chooses the best available action. In a game, the best action for any 
given player depends, in general, on the other players’ actions. So when 
choosing an action a player must have in mind the actions the other 
players will choose. That is, she must form a belief about the other 
players’ actions. 
On what basis can such a belief be formed? The assumption underlying 
the analysis in this chapter and the next two chapters is that each player’s 
belief is derived from her past experience playing the game, and that this 
experience is sufficiently extensive that she knows how her opponents 
will behave. No one tells her the actions her opponents will choose, but 
her previous involvement in the game leads her to be sure of these 
actions. 
Although we assume that each player has experience playing the game, 
we assume that she views each play of the game in isolation. She does not 
become familiar with the behavior of specific opponents and 
consequently does not condition her action on the opponent she faces; nor 
does she expect her current action to affect the other players’ future 
behavior. 
It is helpful to think of the following idealized circumstances. For each 
player in the game there is a population of many decision-makers who 
may, on any occasion, take that player’s role. In each play of the game, 
players are selected randomly, one from each population. Thus each 
player engages in the game repeatedly, against ever-varying opponents. 
Her experience leads her to beliefs about the actions of “typical” 
opponents, not any specific set of opponents. 
As an example, think of the interaction between buyers and sellers. 
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Buyers and sellers repeatedly interact, but to a first approximation many 
of the pairings may be modeled as random. In many cases a buyer 
transacts only once with any given seller, or interacts repeatedly but 
anonymously (when the seller is a large store, for example). 
In summary, the solution theory we study has two components. First, 
each player chooses her action according to the model of rational choice, 
given her belief about the other players’ actions. Second, every player’s 
belief about the other players’ actions is correct. These two components 
are embodied in the following definition. 
A Nash equilibrium is an action profile a∗  with the property that no 
player i  can do better by choosing an action different from a∗ i , given 
that every other player j  adheres to a∗ j . 
In the idealized setting in which the players in any given play of the game 
are drawn randomly from a collection of populations, a Nash equilibrium 
corresponds to a steady state. If, whenever the game is played, the action 
profile is the same Nash equilibrium a∗ , then no player has a reason to 
choose any action different from her component of a∗ ; there is no 
pressure on the action profile to change. Expressed differently, a Nash 
equilibrium embodies a stable “social norm”: if everyone else adheres to 
it, no individual wishes to deviate from it. 
The second component of the theory of Nash equilibrium—that the 
players’ beliefs about each other’s actions are correct—implies, in 
particular, that two players’ beliefs about a third player’s action are the 
same. For this reason, the condition is sometimes said to be that the 
players’ “expectations are coordinated”. 
The situations to which we wish to apply the theory of Nash equilibrium 
do not in general correspond exactly to the idealized setting described 
above. For example, in some cases the players do not have much 
experience with the game; in others they do not view each play of the 
game in isolation. Whether or not the notion of Nash equilibrium is 
appropriate in any given situation is a matter of judgment. In some cases, 
a poor fit with the idealized setting may be mitigated by other 
considerations. For example, inexperienced players may be able to draw 
conclusions about their opponents’ likely actions from their experience in 
other situations, or from other sources.  Ultimately, the test of the 
appropriateness of the notion of Nash equilibrium is whether it gives us 
insights into the problem at hand. With the aid of an additional piece of 
notation, we can state the definition of a Nash equilibrium precisely. Let 
a be an action profile, in which the action of each player i is ai . Let a’i  
be any action of player i  (either equal to ai , or different from it). Then 
(a’i, a−i) denotes the action profile in which every player j except i 
chooses her action aj  as specified by a , where as player i  chooses a’i . 
(The –i subscript on a stands for “except i ”.) That is, (a’i, a−i) is the 



	 12	

action profile in which all the players other than i adhere to a  while i  
“deviates” to a’i . (If a’i = ai then of course (a’i , a−i) = (ai , a−i) = a.) If 
there are three players, for example, then (a’2, a−2) is the action profile in 
which players 1 and 3 adhere to a  (player 1 chooses a1 , player 3 chooses 
a3 ) and player 2 deviates to a’2 . 
Using this notation, we can restate the condition for an action profile a∗ 
to be a Nash equilibrium: no player i has any action ai for which she 
prefers (ai, a∗−i)  to a∗ . 
Equivalently, for every player i and every action ai of player i , the action 
profile a∗ is at least as good for player i  as the action profile (ai , a∗  −i) . 
_  DEFINITION (Nash equilibrium of strategic game with ordinal 
preferences) 

The action profile a∗ in a strategic game with ordinal preferences 
is a Nash equilibrium if, for every player i and every action ai  of player i, 
a∗   is at least as good according to player i ’s preferences as the action 
profile (ai , a∗−i)  in which player i  chooses ai while every other player j  
chooses a∗j  . Equivalently, for every player i , 
            ui(a∗) ≥ ui(ai , a∗−i)  for every action ai  of player i ,                  (a) 
 
where ui  is a payoff function that represents player i ’s preferences. This 
definition implies neither that a strategic game necessarily has a Nash 
equilibrium, nor that it has at most one. Examples in the next section 
show that some games have a single Nash equilibrium, some possess no 
Nash equilibrium, and others have many Nash equilibria. 
The definition of a Nash equilibrium is designed to model a steady state 
among experienced players. An alternative approach to understanding 
players’ actions in strategic games assumes that the players know each 
others’ preferences, and considers what each player can deduce about the 
other players’ actions from their rationality and their knowledge of each 
other’s rationality.  
 
Examples of Nash equilibrium 
 

By examining the four possible pairs of actions in the Prisoner’s 
Dilemma we see that (Fink, Fink) is the unique Nash equilibrium. 
 The action pair (Fink, Fink) is a Nash equilibrium because (i ) given that 
player 2 chooses Fink , player 1 is better off choosing Fink  than Quiet  
(looking at the right column of the table we see that Fink  yields player 1 
a payoff of 1 whereas Quiet yields her a payoff of 0), and (ii ) given that 
player 1 chooses Fink , player 2 is better off choosing Fink  than Quiet  
(looking at the bottom row of the table we see that Fink  yields player 2 a 
payoff of 1 whereas Quiet  yields her a payoff of 0). 
No other action profile is a Nash equilibrium: 
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• (Quiet, Quiet)  does not satisfy (a)  because when player 2 chooses 
Quiet , player 1’s payoff to Fink  exceeds her payoff to Quiet  (look at the 
first components of the entries in the left column of the table). (Further, 
when player 1 chooses Quiet, player 2’s payoff to Fink  exceeds her 
payoff to Quiet : player 2, as well as player 1, wants to deviate. To show 
that a pair of actions is not a Nash equilibrium, however, it is not 
necessary to study player 2’s decision once we have established that 
player 1 wants to deviate: it is enough to show that one  player wishes to 
deviate to show that a pair of actions is not a Nash equilibrium.) 
• (Fink  Quiet)  does not satisfy (a) because when player 1 chooses Fink , 
player 2’s payoff to Fink  exceeds her payoff to Quiet  (look at the second 
components of the entries in the bottom row of the table). 
• (Quiet, Fink)  does not satisfy (a) because when player 2 chooses Fink , 
player 1’s payoff to Fink  exceeds her payoff to Quiet  (look at the first 
components of the entries in the right column of the table). 
 
Strict and nonstrict equilibria 
 

In all the Nash equilibria of the games we have studied so far a 
deviation by a player leads to an outcome worse for that player than the 
equilibrium outcome. 
The definition of Nash equilibrium, however, requires only that the 
outcome of a deviation be no better for the deviant than the equilibrium 
outcome. And, indeed, some games have equilibria in which a player is 
indifferent between her equilibrium action and some other action, given 
the other players’ actions. 
Consider the game in Figure 6. This game has a unique Nash equilibrium, 
namely (T, L). (For every other pair of actions, one of the players is better 
off changing her action.) When player 2 chooses L, as she does in this 
equilibrium, player 1 is equally happy choosing T or B; if she deviates to 
B then she is no worse off than she is in the equilibrium. We say that the 
Nash equilibrium (T, L) is not a strict equilibrium. 
 
                                                 
                                                 L           M            R 
                         T                    1 1,        1,0,         0, 1 
                         B                    1,0,        0 1,         1 0,  
 
   Figure 6 A game with a unique Nash equilibrium, which is not a strict equilibrium 
 
For a general game, an equilibrium is strict if each player’s equilibrium 
action is better than all her other actions, given the other players’ actions. 
Precisely, an action profile a∗  is a strict Nash equilibrium if for every 
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player i we have  ui(a∗) > ui(ai, a∗  −i) for every action ai = a∗ i of player 
i. (Contrast the strict inequality in this definition with the weak inequality 
in (a).) 
 
3. Best response functions 
 

We can find the Nash equilibria of a game in which each player 
has only a few actions by examining each action profile in turn to see if it 
satisfies the conditions for equilibrium. In more complicated games, it is 
often better to work with the players’ “best response functions”. 
Consider a player, say player i. For any given actions of the players other 
than i, player i’s actions yield her various payoffs. We are interested in 
the best actions— those that yield her the highest payoff.  For example, 
Bach is the best action for player 1 if player 2 chooses Bach; Stravinsky 
is the best action for player 1 if player 2 chooses Stravinsky. In particular, 
in BoS, player 1 has a single best action for each action of player 2. By 
contrast, in the game in Figure 31.1, both T and B are best actions for 
player 1 if player 2 chooses L: they both yield the payoff of 1, and player 
1 has no action that yields a higher payoff (in fact, she has no other 
action)   
We denote the set of player i ’s best actions when the list of the other 
players’ actions is a−i by Bi(a−i) . Thus in BoS we have B1(Bach) = 
{Bach}  and B1(Stravinsky) = {Stravinsky} ; in the game in Figure 6 we 
have B1(L) = {T , B} . 
Precisely, we define the function Bi by  
 
Bi(a−i) = {ai  in Ai  : ui(ai  , a−i) ≥ ui(a’i  , a−i)  for all a’i  in Ai}  : 
 
any action in Bi(a−i)  is at least as good for player i  as every other action 
of player i when the other players’ actions are given by a−i . We call Bi  
the best response function  of player i . 
The function Bi is set-valued : it associates a set of actions with any list of 
the other players’ actions. Every member of the set Bi(a−i)  is a best 
response  of player i  to a−i : if each of the other players adheres to a−i  
then player i  can do no better than choose a member of Bi(a−i) . In some 
games, the set Bi(a−i) consists of a single action for every list a−i  of 
actions of the other players: no matter what the other players do, player i  
has a single  optimal action. In other games, Bi(a−i)  can contains more 
than one action for some lists a−i  of actions of the other players. 
 
Using best response functions to define Nash equilibrium 
 

A Nash equilibrium is an action profile with the property that no 
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player can do better by changing her action, given the other players’ 
actions. Using the terminology just developed, we can alternatively 
define a Nash equilibrium to be an action profile for which every player’s 
action is a best response to the other players’ actions. 
That is, we have the following result. 
PROPOSITION  
The action profile a∗  is a Nash equilibrium of a strategic game with 
ordinal preferences if and only if every player’s action is a best response 
to the other players’ actions: 
                                a∗i is in Bi(a∗−i) for every player i .                        (b) 
 
If each player i has a single best response to each list a−i of the other 
players’ actions, we can write the conditions in (b) as equations. In this 
case, for each player i and each list a−i  of the other players’ actions, 
denote the single member of Bi(a−i)  by bi(a−i) (that is, Bi(a−i) = {bi(a−i)} ). 
Then (b) is equivalent to 
                               a∗ i = bi(a∗−i)  for every player i ,                             (c) 
 
a collection of n  equations in the n  unknowns a∗i  , where n  is the 
number of players in the game. For example, in a game with two players, 
say 1 and 2, these equations are 
                                        a∗1 = b1(a∗2 )         a∗2 = b2(a∗1 ) . 
 
That is, in a two-player game in which each player has a single best 
response to every action of the other player, (a∗1, a∗2) is a Nash 
equilibrium if and only if player 1’saction a∗1 is her best response to 
player 2’s action a∗2  , and player 2’s action a∗2  is her best response to 
player 1’s action a∗1 . 
 

The definition of a Nash equilibrium in terms of best response 
functions suggests a method for finding Nash equilibria: 
•  find the best response function of each player 
• find the action profiles that satisfy (b) (which reduces to (c) if each 
player has a single best response to each list of the other players’ actions). 
To illustrate this method, consider the game in Figure 7. First find the 
best response of player 1 to each action of player 2. If player 2 chooses L, 
then player 1’s best response is M  (2 is the highest payoff for player 1 in 
this column); indicate the best response by attaching a star to player 1’s 
payoff to (M, L) . If player 2 chooses C, then player 1’s best response is 
T, indicated by the star attached to player 1’s payoff to (T, C). And if 
player 2 chooses R, then both T  and B  are best responses for player 1; 
both are indicated by stars. Second, find the best response of player 2 to 
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each action of player 1 (for each row, find highest payoff of player 2); 
these best responses are indicated by attaching stars to player 2’s payoffs. 
Finally, find the boxes in which both players’ payoffs are starred. Each 
such box is a Nash equilibrium: the star on player 1’s payoff means that 
player 1’s action is a best response to player 2’s action, and the star on 
player 2’s payoff means that player 2’s action is a best response to player 
1’s action. Thus we conclude that the game has two Nash equilibria: 
 (M, L)  and (B, R . 
 
 
                                     L                           C                    R 
                             T      1 ,2∗                    2∗ , 1             1∗ , 0 
                             M     2∗ , 1∗                 0 ,1∗              0 ,0 
                             B      0 ,1                       0 ,0                1∗ , 2∗ 

Figure 7 Using best response functions to find Nash equilibria in a two-player 
game in which each player has three actions. 
 
4. Dominated actions 
 
Strict domination 
 
You drive up to a red traffic light. The left lane is free; in the right lane 
there is a car that may turn right when the light changes to green, in 
which case it will have to wait for a pedestrian to cross the side street. 
Assuming you wish to progress as quickly as possible, the action of 
pulling up in the left lane “strictly dominates” that of pulling up in the 
right lane. If the car in the right lane turns right then you are much better 
off in the left lane, where your progress will not be impeded; and even if 
the car in the right lane does not turn right, you are still better off in the 
left lane, rather than behind the other car. 
In any game, a player’s action “strictly dominates” another action if it is 
superior, no matter what the other players do. 
DEFINITION (Strict domination) 
 In a strategic game with ordinal preferences, player i’s action a”i strictly 
dominates her action a’i if ui(a”i , a−i) > ui(a’i , a−i) for every list a−i of 
the other players’ actions, where ui is a payoff function that represents 
player i’s preferences. 
In the Prisoner’s Dilemma, for example, the action Fink strictly 
dominates the action Quiet: regardless of her opponent’s action, a player 
prefers the outcome  when she chooses Fink  to the outcome when she 
chooses Quiet . In BoS , on the other hand, neither action strictly 
dominates the other: Bach  is better than Stravinsky if the other player 
chooses Bach , but is worse than Stravinsky  if the other player chooses 
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Stravinsky. If an action strictly dominates the action ai , we say that ai  is 
strictly dominated . A strictly dominated action is not a best response to 
any actions of the other players: whatever the other players do, some 
other action is better. Since a player’s Nash equilibrium action is a best 
response to the other players’ Nash equilibrium actions, a strictly 
dominated action is not used in any Nash equilibrium. 
 When looking for the Nash equilibria of a game, we can thus eliminate 
from consideration all strictly dominated actions. For example we can 
eliminate Quiet for each player in the Prisoner’s Dilemma , leaving (Fink, 
Fink)  as the only candidate for a Nash equilibrium. (As we know, this 
action pair is indeed a Nash equilibrium.) The fact that the action a”i 
strictly dominates the action a’i of course does not imply that a”i  strictly 
dominates all  actions. Indeed, a”i may itself be strictly dominated. 
In the left-hand game in Figure 8, for example, M strictly dominates T, 
but B is better than M if player 2 chooses R. (I give only the payoffs of 
player 1 in the figure, because those of player 2 are not relevant.) Since T 
is strictly dominated, the game has no Nash equilibrium in which player 1 
uses it; but the game may also not have any equilibrium in which player 1 
uses M . In the right-hand game, M strictly dominates T but itself strictly 
dominated by B. In this case, in any Nash equilibrium player 1’s action is 
B  (her only action that is not strictly dominated). 
 
                                               L          R 
                                       T    1,1        0,0 
                                       M   2,2        1,1 
                                       B    1,3        3,2 

Figure 8 Two games in which player 1’s action T is strictly dominated by M  
 
In the left-hand game, B is better than M if player 2 chooses R; in 

the right-hand game, M itself is strictly dominated, by B. 
A strictly dominated action is incompatible not only with a steady state, 
but also with rational behavior by a player who confronts a game for the 
first time. 
 
 Weak domination 
 
As you approach the red light in the situation at the start of the previous 
section, there is a car in each lane. The car in the right lane may, or may 
not, be turning right; if it is, it may be delayed by a pedestrian crossing 
the side street. The car in the left lane cannot turn right. In this case your 
pulling up in the left lane “weakly dominates”, though does not strictly 
dominate, your pulling up in the right lane. 
If the car in the right lane does not turn right, then both lanes are equally 
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good; if it does, then the left lane is better. 
In any game, a player’s action “weakly dominates” another action if the 
first action is at least as good as the second action, no matter what the 
other players do, and is better than the second action for some actions of 
the other players. 
DEFINITION  (Weak domination ) 
 In a strategic game with ordinal preferences, player i ’s action a”i weakly 
dominates her action a’i  if ui(a”i  , a−i) ≥ ui(a’i , a−i)  for every list a−i  of 
the other players’ actions and ui(a”i , a−i) > ui(a’i , a−i)  for some list a−i  
of the other players’ actions, where ui  is a payoff function that represents 
player i ’s preferences. 
For example, in the game in Figure 9 (in which, once again, only player 
1’s payoffs are given), M  weakly dominates T , and B  weakly dominates 
M ; B  strictly dominates T . 
                                                         L   R 
                                               T       1    0 
                                               M      2    0 
                                               B       2    1 
Figure 9. A game illustrating weak domination. (Only player 1’s payoffs are given.)  
 
The action M weakly dominates T; B weakly dominates M. The action B 
strictly dominates T equilibrium action. 
Can an action be weakly dominated in a nonstrict Nash equilibrium? 
Definitely. 
 
5. Zero-sum game 
 

A situation in which one person’s gain is equivalent to another’s 
loss, so the net change in wealth or benefit is zero. 
Zero-sum game: a game in which the sum of all players’ payoffs equals 
zero for every outcome. So essentially you have a game that game can 
produce some number of outcomes and if we are looking at a zero-sum 
game then it must be the case that you take any outcome from the game 
and you sum all of the players pay off together and that some must equal 
exactly zero. 
Minmax (maxmin) approach 
Minmax is a decision rule used in game theory for minimizing the 
possible loss or for maximizing the possible win for a worst case 
scenario. 
	
																																				Y1								y2	
							X1																						3													5	
							X2																						1												-2	
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What will happen with Y if Y choose y1?  
If X chooses x1 Y can lose 3 .  
If X chooses x2 Y can lose 1. 
So maximum possible loss of player Y is going to be 3. 
Similarly maximum possible lost for Y if Y chooses y2 is 5. 
Y tries to minimize the possible losses. The idea is very simple. So Y 
must choose y1 
The criteria being used by Y in this situation is minimax criteria which is 
minimizing the maximum lost. This 3 is called UPON VALUE of the 
game . 
Similarly if you consider strategies used by the player X.  X tries to 
maximize possible win. 
In first row minimum possible win is 3. 
In second row is -2 
So X must choose x1.  The criteria being used by  X in this situation is 
maxmin criteria which is maximizing the minimum win. This 3 is called 
LOWER VALUE of the game . 
In this game  
UPPER=LOWER=VALUE=3 
This 3 is average expected game outcome of this game if play many 
times. So both players X and Y will use strategies in such a way that they 
end up with this value 3. 
This solution is SADDLE POINT for zero-sum game and is Pure Nash 
Equilibrium. 

Definition of saddle point  

A saddle point of a matrix is the position of such an element in the payoff 
matrix, which is minimum in its row and the maximum in its column.  

Procedure to find the saddle point  

o •  Select the minimum element of each row of the payoff 
matrix and mark them with circles.  

o •  Select the maximum element of each column of the payoff 
matrix and mark them with squares.  

o •  If their appears an element in the payoff matrix with a 
circle and a square together then that position is called 
saddle point and the element is the value of the game.  

Solution of games with saddle point  
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To obtain a solution of a game with a saddle point, it is 
feasible to find out  

•  Best strategy for player A  

•  Best strategy for player B  

o •  The value of the game  

_________________________________________________________ 
JOHN  F. NASH , JR . 
A few of the ideas of John F. Nash Jr., developed while he was a graduate student at 
Princeton from1948 to 1950, transformed game theory. Nash was born in 1928 in 
Bluefield, West Virginia, USA, where he grew up. He was an undergraduate 
mathematics major at Carnegie Institute of Technology from 1945 to 1948. In 1948 
he obtained both a B.S. and an M.S., and began graduate work in the Department of 
Mathematics at Princeton University. (One of his letters of recommendation, from a 
professor at Carnegie Institute of Technology, was a single sentence: “This man is a 
genius” (Kuhn et al. 1995, 282).) A paper containing the main result of his thesis was 
submitted to the Proceedings of the National Academy of Sciences  in November 
1949, fourteen months after he started his graduate work. (“A fine goal to set . . 
.graduate students”, to quote Kuhn! (See Kuhn et al. 1995, 282.)) He completed his 
PhD the following year, graduating on his 22nd birthday. His thesis, 28 pages in 
length, introduces the equilibrium notion now known as “Nash equilibrium” and 
delineates a class of strategic games that have Nash equilibrium (Proposition 116.1 in 
this book). The notion of Nash equilibrium vastly expanded the scope of game theory, 
which had previously focused on two-player “strictly competitive” games (in which 
the players’ interests are directly opposed). While a graduate student at Princeton, 
Nash also wrote the seminal paper in bargaining theory, Nash (1950b) 
(the ideas of which originated in an elective class in international economics he took 
as an undergraduate). He went on to take an academic position in the Department  
(Milnor 1995, 15); he has been described as “one of the most original mathematical 
minds of [the twentieth] century” (Kuhn 1996). He shared the 1994 Nobel prize in 
economics with the game theorists John C. Harsanyi and Reinhard Selten. 
 
6. EXERCISES 
 

1. Formulate this situation as a strategic game and find its Nash 
equilibrium 
 

Task 1.1 
Players I and II simultaneously call out one of the numbers one or two. 
Player I’s name is Odd; he wins if the sum of the numbers is odd. Player 
II’s name is Even; he wins if the sum of the numbers is even. 
 
Task 1.2 
Both players simultaneously choose an integer from 0 to 3 and they both 
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win the smaller of the two numbers in points. In addition, if one player 
chooses a larger number than the other, then he have to give up two 
points to the other. For example: if Player1 chooses ‘1’ and Player 2 
chooses ‘2’, we have outcome (3,-1). 
 
Task 1.3 
The previous game (Task 2) is modified so that the two players win the 
named amount if they both choose the same number, and otherwise win 
nothing. 
 
Task 1.4 

There are two bars in a city, with owners labelled A and B, who can 
charge $2, $4, or $5 per drink. Each day, there are 6,000 tourists and 
4,000 locals who decide which bar to visit. (Each person can only go to 
one bar and each must go to at least one bar, where each person has 
exactly one drink.) Since tourists have no idea about the bars, they 
randomize without reference to the pricing. The locals, however, always 
go to the cheapest bar (and randomize if the prices are the same).  The 
question is: what prices should the owners set if they choose 
simultaneously?  (Use iterated elimination of dominated strategies) 

Examples of the outcomes: 

f1 (2,2)= (3000+2000)*2=10000 

f1(4,2)=3000*4=12000 

f1(2,4)=(3000+4000)*2=14000 

f2(2,4)=3000*4=12000 

Task 1.5 

Let there are 6 possible trade points evenly spaced along the street. They 
are equidistance from each other. The first point is at the beginning of the 
block and the latest point is at the end of the block. 
Both vendors can choose any trade point for the sale of ice cream. What 
is the winning strategy for one of these two vendors? ?  (Use iterated 
elimination of dominated strategies) 

Task 1.6 
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 Both players simultaneously choose an integer from 0 to 3 and they both 
win the smaller of the two numbers in points. In addition, if one player 
chooses a larger number than the other, then they have to give up two 
points to the other. 

Task 1.7 

Each of the two firms, loses $ 2 million per period if they both sell 
Internet browsers. When a firm does not have a rival, then, becoming a 
monopolist, it will earn $ 10 per period. Firms can withdraw from the 
market in 2016 (with income 0) and in 2017 -2018 (having lost 2 million 
for each previous year), or remain until the end of 2018.  

Task 1.8 

Two firms lease adjacent land over a 100 million-tonne oil tank. The cost 
of one ton is $ 200. Each of the firms should decide whether to drill a 
well and, if drilled, what size? Drilling and servicing a narrower well 
costs $ 100 million, and a broad $ 300 million. But at the same time, 
three times more oil will be pumped through a wide well a day. 

 

2. Use iterated elimination of dominated strategies and find the Nash 
Equalibrium in pure strategies 

2.1  

                                x1 x2 x3 x4 x5 

 y1  28;1 63;1 2;0 2;45 3;19 

 y2  2;2 32;1 2;5 33;0 2;3 

 y3  95;1 54;1 0;2 4;1 0;4 

 y4  3;43 1;33 1;39 1;12 1;17 

 y5  1;13 22;0 1;88 2;57 3;72 

 y6  0;12 15;0 0;0 0;99 1;88 

 

 



	 23	

2.2 

                                         x1 x2 x3 

y1  1,1 -2,0   4,-1 

        y2  0,3  3,1 5,4 

   y3  1,5  4,2 6,2 

 
2.3 
 
    x1 x2 x3 
  y1  1;23 2;55 0;33 
  y2  22;0 1;13 1;88 
  y3  0;2 5;6 2;14 
 
2.4 
 
    x1 x2 x3 
  y1  2;6 33;0 2;3 
  y2  0;2 4;1 0;4 
  y3  1;39 1;12 1;17 
 

3. Find  LOWER and UPPER VALUE of the game and check about 
Pure Nash Equilibrium in zero-sum game 
3.1   
      12 22 65 67 
 33 11 90 12 
 88 25 67 28 
 
3.2 
 12 11 11 13 
 55 10 11 15 
 44 12 11 16 
 
3.3  

10 11 12 13 
 14 15 16 17 
 18 19 20 21 
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